Infinitely presented small cancellation groups have the Haagerup property

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Haagerup property for locally compact quantum groups

The Haagerup property for locally compact groups is generalised to the context of locally compact quantum groups, with several equivalent characterisations in terms of the unitary representations and positive-definite functions established. In particular it is shown that a locally compact quantum group G has the Haagerup property if and only if its mixing representations are dense in the space ...

متن کامل

Haagerup Property for Algebraic Groups over Local Fields

We classify, among the linear algebraic groups over a local field of characteristic zero, those that have the Haagerup property (also called a-(T)-menability). Our method relies essentially on a discussion on the existence of a subgroup isomorphic, up to a finite covering, to the semidirect product of SL2 by an irreducible representation, or a one-dimensional central extension of an even-dimens...

متن کامل

The Haagerup property, Property (T) and the Baum-Connes conjecture for locally compact Kac-Moody groups

We indicate which symmetrizable locally compact affine or hyperbolic Kac-Moody groups satisfy Kazhdan’s Property (T), and those that satisfy its strong negation, the Haagerup property. This reveals a new class of hyperbolic Kac-Moody groups satisfying the Haagerup property, namely symmetrizable locally compact Kac-Moody groups of rank 2 or of rank 3 noncompact hyperbolic type. These groups thus...

متن کامل

The Burnside Groups and Small Cancellation Theory

In a pair of recent articles, the author develops a general version of small cancellation theory applicable in higher dimensions ([5]), and then applies this theory to the Burnside groups of sufficiently large exponent ([6]). More specifically, these articles prove that the free Burnside groups of exponent n ≥ 1260 are infinite groups which have a decidable word problem. The structure of the fi...

متن کامل

Local Similarities and the Haagerup Property

A new class of groups, the locally finitely determined groups of local similarities on compact ultrametric spaces, is introduced and it is proved that these groups have the Haagerup property (that is, they are a-T-menable in the sense of Gromov). The class includes Thompson’s groups, which have already been shown to have the Haagerup property by D. S. Farley, as well as many other groups acting...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Topology and Analysis

سال: 2015

ISSN: 1793-5253,1793-7167

DOI: 10.1142/s1793525315500144